
invent - imagine...explore...&...learn 1

invent
Imagine...Explore...&...Learn

invent - imagine...explore...&...learn 2

invent
Design of a programming language for children

By
Pranav Mistry

Guide
Prof. Ravi Poovaiah

a
IIT Bombay

invent - imagine...explore...&...learn 3

The Visual Communication Project - 3 entitled
‘invent - design of a programming language for
children’ by Pranav Mistry, 03625008 is approved as
partial fulfillment of the requirements of the Masters of
Design Degree in Visual Communication.

Project guide

Chair person

External examiner

Internal examiner

Approval sheet

invent - imagine...explore...&...learn 4

I would like to thank Prof. Ravi Poovaiah for guiding me
with his abundant zeal throughout the project. I heartily
thank Mr. Srini Koppulu, MD, Microsoft India R&D for his
kind support. A thank to Prof. Anirudha Joshi, Prof. Shilpa
Ranade and Dr. Ajanta Sen Poovaiah for giving me their
valuable insights on my project. I would also love to thank
my friends Gajendra and Amisha for their constant help
throughout the project work. I am also in debt of my friend
Pushpam for his wonderful illustration for my story ‘The
School Train’.

At the last & the most, I thank all the children of the world
for giving me such a wonderful opportunity to invent
‘invent’.

Pranav Mistry

Acknowledgements

invent - imagine...explore...&...learn 5

Abstract . 01

1. Introduction . 02
 . The beginning
 . Chapters

2. The School Train – one more story of
 Swami and friends 06
 . ‘Malgudi days’ and I
 . The School Train

3. From Pavlov to Piaget
 & from Bruner to Papert 14
 . An overview
 . Constructivism and constructionism
 . Some experiments
 . I think …

4. Why a programming language? 21
 . A medium to think
 . The language to communicate
 . Learning problem solving
 . Learning how to learn

5. Children & programming . 25
 . What is programming?
 . Programming languages
 . Children and programming languages

6. Ideation . 40
 . Interacting with children
 . Inferences
 . Invent is ….
 . Create, Animate and Instruct
 . ‘Everything is an object’
 . A drawing paper
 . Interaction design and system design
 . Refinements

7. ‘invent’ . 50
 . What is ‘invent’?
 . The design
 . Create
 . Animate
 . Instruct
 . The in and out of ‘invent’
 . The water carrying train of Malgudi

References . 72

Contents

invent - imagine...explore...&...learn 1

A conceptual gap exists between the representations
that people use in their minds when thinking about a
problem and the representations that computers will
accept when they are programmed. For most people
learning programming, this gap is as wide as the Grand
Canyon. Besides this, it is observed that one learns better
by exploring. ‘invent’ is a research project under the
guidance of Prof. Ravi Poovaiah initiated with the vision
to help provide a medium to do the same. The goal of
the project ‘invent’ is to design a programming language
for children. The key ideas are to use representations in
the computer that are analogous to the real world objects
being represented or letting children create them as per
their imagination and to allow those representations to
be directly manipulated in the process of programming.
The child can create objects, enliven their objects and use
those objects to create their world creating challenges and
solutions to those challanges. ‘To know the world, one
must construct it’ and ‘invent’ is the medium to do it for
children to learn themselves by exploring their ideas. The
overall design of ‘invent’ provides a mean ‘to create what
a child wants’, ‘to decide how it will look, behave or act’
and ‘to instruct it what to do and when’ in an intuitive way.
In other worlds, ‘invent’ is a medium to think and explore.
It is an environment that allows children to explore their
imagination.

‘invent’ is an attempt to make programming more like
thinking or rather say to have a medium to think.
In brief, invent = ‘Imagine...Explore...&...Learn’

Abstract

invent - imagine...explore...&...learn 2

The beginning

I was in the 2nd standard. I don’t remember exactly how
it was looking at that time, but I have some memories
that there was something that I used to connect to my
Television set and had great fun at that time.

That something belonged to my father’s friend who was a
video shooter in my hometown Palanpur and used to shoot
marriage videos. In those days he used to use handwritten
colorful texts on paper to provide starting screen to
those marriage videos like ‘Manish weds Sangita’. He
put those paper posters in front of his camera to provide
information like who marries whom, where and when. This
new something was to replace this old method and to
provide so called ‘computerized’ video shooting in which
that paper screens were replaced by colorful graphics
generated with that something.

I remember that my father used to play with it often. I was
also keen to learn it and used to observe what they both
(my father and that device) are doing. I was so happy that
day when my father gave me a chance to play with it.
Though there were a lot of instructions given by him along
with, I was ready to obey all to use it. Father gave me a
book and told me to copy something written in it as same
as in the book. I did it.

Today when I think about those days I feel excited that I did
programming when I was in 2nd. Yes, that something was
nothing but the first computer I had used, commodore
C64 and those alien characters I typed was BASIC, a
programming language.

After this first introduction, I met a new form of computing
again in my 5th standard in school. We had an optional
course ‘computer fundamentals’ in my school those days.
I met those alien characters of BASIC again here in a
much more instructional way. I learnt BASIC programming
good enough. My interest and friendship with computers
from early age urged me to have my graduation also in
computer engineering. From BASIC to COBOL and from
LISP to C++, I learnt so many of them. Today, I am very
happy that I am here with my own, ‘invent’.

Introduction

‘All understanding begins with our not
accepting the world as it appears.’

- Alan C. Kay

invent - imagine...explore...&...learn 3

It began with my interest in programming and working with
children. During this journey of designing a programming
language for children and reading about thoughts of
some great people on the same I came across some very
motivating words of Alan Kay. Here I would love to refer to
the excerpt from the Foreword written by Alan Kay for the
book ‘Watch what I do’ which is a collection of presented
work at the workshop on Programming by Demonstration
that was held at Apple Computer in March, 1992. Alen
Cypher has compiled the work.

“I don’t know who first made the parallel between
programming a computer and using a tool, but it was
certainly implicit in Jack Licklider’s thoughts about
“man-machine symbiosis” as he set up the ARPA IPTO
research projects in the early sixties. In 1962, Ivan
Sutherland’s Sketchpad became the exemplar to this day
for what interactive computing should be like, including
having the end-user be able to reshape the tool.

The idea that programming should be set up so it could
be metaphorically like writing is harder to track down,
but you could see it in Cliff Shaw’s JOSS from the same
early period. Besides being the first real “end-user”
language, and the first a�empt at a really “user-friendly”
interface, it included a special terminal design adapted
from a high-quality IBM electric typewriter that printed
in two colors in lower and upper case on drilled fanfold
8*11 paper so that the output was a direct extension of
one’s notebook.

The vague term “computer literacy” also surfaced in the
sixties, and in its strongest sense reflected a belief that
the computer was going to be more like the book than a
swiss army knife. Being able to “read” and “write” in it
would be as universally necessary as reading and writing
became a�er Gutenberg. The Dynabook idea was a prime
focus during this time as the kind of thing computers
were going to turn into, forced by engineering possibility
and sociological necessity.

Introduction

invent - imagine...explore...&...learn 4

Alan Kay’s words very well depict the picture of
programming language design vision from historical as well
as from the aspect of having a need of a learning medium
for children. Some of the analogies like ‘reading’-’writing’
are wonderful thoughts. Using different concepts like
‘Programming by demonstration’ or ‘Rule-based language’
there are so many efforts to have end-user programming
languages in the history of computing. Though, intentions
and visions behind these efforts have made those designs
unique in themselves.

‘invent’ is my kind attempt to design a programming
language for children. Imagine…explore…&…learn.
With this vision I would love to put forward my ideas about
‘invent’ in the rest of the chapters.

Introduction

......continue from previous page

The analogy to reading was the easiest to see. If “reading”
is the skill to be able to understand and use messages
represented as gestures in a medium whose conventions
are in close agreement between writer and reader, then
the equivalent of reading on a computer would require
the invention of a user-interface language that could
universally frame the works of many thousands of
authors whose interests would range far beyond those
of the interface designers. “Writing” on the other hand
requires the end-users to somehow construct the same
kinds of things that they had been reading, a much more
difficult skill.

Wally Feurzig and Seymour Papert had a different notion
about the place of computer “reading” and “writing”:
that like the reading and writing of books, it wasn’t just
about ge�ing and conveying information, but the very
act of learning and doing them expands one’s horizons
and adds new ways of thinking about the world. In other
words, programming could be good for people, and thus
some effort should be put into designing systems that
would have pedagogical benefit for both children and
adults.
……..”

-Alan Kay

[Excerpt from, Kay, Alan. Foreword, Watch What I Do:
Programming by Demonstration. Edited by Cypher,
Alen. The MIT press. 1993.]

invent - imagine...explore...&...learn 5

Chapters

Through out the text of the report, I will go in a logical way.
This chapter ‘introduction’ gives a basic idea of ‘what
is?’ Some of the thoughts of Alan Kay motivated me a lot
in my thinking and work, too. The chapter is in real sense
‘introduction’ to what I want to convey next.

In the next chapter, I start with a story The School Train.
Through the story I want to generate a visualization in the
mind about for whom the ‘invent’ is for. At this stage let
me clear again that ‘invent’ is a programming language
for children I designed. I think stories are wonderful tool to
explore and explain concepts. Characters of Swami, Rajam
and friends and their stories can help well providing good
scenario for my project.

In the chapter ‘From Pavlov to Piaget & from Bruner to
Papert’, theories and viewpoints of Pavlov, Piaget, Papert,
Bruner, and others about how children think and learn are
discussed in brief along with my personal ideas on the
same. Some experiments I conducted are also mentioned
in brief at the end.

I want to design a programming language. But, why? In the
chapter, ‘Why a programming language?’ I have tried to
answer the same. This answer follows the logical base of
discussion and thinking of the preceding chapters.

The generic understanding about programming languages
and children are described the ‘Children & programming’.
A brief about others’ attempts to design a programming
language for children are also mentioned.

‘Ideation’ talks about the core design process I went
through along with the main ideas which make ‘invent’
what I dreamt for. It also discusses the process and
interaction design issues of ‘invent’.

Chapter ‘invent’ speaks about what after all invent is and
what the final design is. At last I have discussed some
thoughts about what ‘invent’ can do with the help of my
Malgudi freinds.

Let’s invent.

Introduction

invent - imagine...explore...&...learn 6

‘Malgudi Days’ and I

After a long, for I seen Swami first time in TV serial
‘Malgudi Days’, recently I could manage to meet him
again by reading the story book, ‘Swami and his friends’.
‘Swami and Friends’ is one of the first novels written by
R.K. Narayan, an English novelist from India. The novel
is set in pre-independence days in India, in a fictional
town - Malgudi, which has almost become a real place in
India today, due to the wide recognition and popularity of
Narayan’s many novels.

‘Swami and Friends’ is the story of a 9-year-old boy,
growing up during this particular time, his innocence,
wonder, mischief and growing pains. He is a student at
Albert Mission School, a school established by the British
which gives importance to Christianity, English literature
and education. His life is dramatically changed when Rajam
joins the school and he and Rajam become friends. The
central theme of the novel is growing up of young Swami.
He is a spontaneous, impulsive, mischievous and yet a very
innocent child.

I found in all these stories my own experiences and
environs of childhood, adolescence and adulthood.
Malgudi was my own Palanpur of primary school days. And
Swami was myself-innocent (‘’Rajam, can you lend me
a policeman?’’), afraid of bullies, fearful of unseen forces
and patronizing to boys smaller than I was. Everything I
read in R. K. Narayan’s stories is familiar and dear to me;
I have seen them all around me as I grew up. Swami’s
grandmother was my own grandmother, indeed everyone’s
grandmother in India’s middle-class households and every
town is Malgudi. Though, Narayan described the age of
pre-independence, one can see Swami in oneself or a
kid today, that same innocence, mischief, wonder and
curiosity. His character is a child in the fullest sense of the
world.

The stories and amazing descriptions of events and
environs urged me to use the characters Swami, Rajam
and friends to explain my thoughts about ‘invent’. More so
over I think stories are wonderful tool to explore and explain
concepts. In my case I think, Swami and Rajam are good
personas for the scenario I am thinking about. Let’s have
one more story of Swami and his friends.

‘The School Train’ – a one more
 story of Swami and friends

invent - imagine...explore...&...learn 7

‘The School Train’
By Pranav Mistry

 The bell hasn’t rung for days in this summer.
It looks all dead around the Albert Mission School of
Malgudi. Even play grounds are all empty. Swami and
his friends too got bored playing cricket in this summer
vacation. At train tracks near Malgudi railway station
they are si�ing and waiting for the train to come. This
time they have got two coins to put on the track to fla�en
them. Swami is interested in something else also other
than this coin game. He loves trains. He dreams to be a
train driver, and the most fascinating activity for him is
to whistle the train. Rajam has a different perspective to
trains, He is always curious to get how it works. Why
those two wheels are connected in train engine? What
that flagman does? Why?

 “Rajam, its coming!” Swami is excited. All
are curious, but they know what is going to happen.
Last time the coin fla�ened, was about 9 days before.
“Nothing will happen.” Someone said. Swami replied, “I
have said the coin, ‘you need to be fla�ened, dear coin’,
he will.” Rajam has no interest in this talk. Finally train
went. They also went with their un-fla�ened coins and
fla�ened faces.

‘The School Train’ – a one more
 story of Swami and friends

invent - imagine...explore...&...learn 8

“This vacation is boring.”
“Let’s play Cricket.”
“It is also boring now.”

 Playing almost for days in this summer Malgudi
Cricket Club members are not in mood to have it.
Anyway they play. The team is divided in two. This is the
ground in almost front of Albert Mission School. Captain
Rajam is quite good at cricket. A ball hit by him goes far
away. Far away in the Albert Mission school.

 “Yes, it went there in school, Swami, go get it.”
 “I......?” Swami doesn’t want to go there in the
school as no one is there. He is frightened.
 “Swami, you are the fielder, go, get it.”

 With his usual babbling and fear in mind he goes
there. It is all alone there. No one is there. “There is no
ball here.” from the gate only he shouts. He is feared of
going in the school campus to see there.

 “It went inside, go in there.”

 With an unknown fear, He goes in the school
campus. ‘No one is here. It looks like that for years no
one turned up there. Who told you to hit so hard?’ He
keeps babbling to himself.

 “Where is the ball?”, he keeps talking to himself.
In search of ball He is almost in the back of the school.
His sound didn’t reach to friends,
 “It is here.”, some one said from his back.
 “Oh, it is here!”, Swami sees ball. He gets it and
about to run back to ground. It was tree from where the

‘The School Train’ – a one more
 story of Swami and friends

invent - imagine...explore...&...learn 9

 “Water to whom? Those trees? How can we?
Where is water?” Swami is full of question. “Swami,
without water they are all dying. We should give them
water. Our school water tank must have water. Let’s do
it.”
“It is already dark Rajam.”
“I know. I mean tomorrow.”

 The very next day morning at ground Rajam is
there with some papers in hand. Swami is there besides
him. He is smiling as they got something like a treasure
and about to announce.

 “My dear MCC friends, we are going to do
something for these trees at back of our school. I and
Swaminathan have come up with a plan for it.” The head
Rajam announced. MCC is Malgudi Cricket Club.

“We will make a canal.”
“A canal?” almost all other than Swami and Rajam asked
altogether.
 “Yes, a canal carrying water from our school
tank to all these trees at the back of our school. They are
dying without water. This is how it will be.” With saying
this Rajam stared showing all the drawings of his canal
proposals to friends that how water will come from main
tank to all the trees of school.

sound “It is here” came, frightens him fully. He has no
courage to see back to look. Swami runs at his best.

“Rajam, Rajam, Rajjjjjjamm....”
“What?”
He finds him self on ground.
“What happened Swami? Why you are looking feared?”
“There,...”
“There what?” Rajam asked.
“Tree talks”
“What? You got mad.”
“No, I swear, I heard.”
“Let’s go there”
“No, Rajam, please, not me.”

 Even a�er his hundreds crying and requests
Rajam fetched him with all his friends there to school
back. All are there at back of the school. Swami is still in
his dream. “There is nothing Swami.” Rajam said. Some
of swami’s friends start ringing the school bell. Days a�er
they are back here in the school. Some are imitating head
master at open stage. It seems that all again got life back.
Swami is now not frightened as friends are all around
with him. They played there. A�er having some fun they
returned to town as soon as the sun returned.
“They are dying, Can we give them water?” Rajam
proposed.

‘The School Train’ – a one more
 story of Swami and friends

invent - imagine...explore...&...learn 10

“We can get water from the hand pump near the tracks.”
“Can we get a long pipe?”
“It is too long.”
“We can fill water in buckets and fetch them to trees.”
“But there are so many trees and we can’t carry that
much water that far.”

 the talk went on. Rajam has his mind somewhere
else.

 It is the time for train to come. Swami puts the
same two coins there on track. They are waiting for the
train. But all are sad. No one is saying anything.

“Let’s make a train!” Suddenly Rajam says.

“A train?” this time all asked and swami was the loudest.

“Yes, a train, a train carrying water to the trees.”

 “how?” ... “what?” ... “but....” “Wonderful!!!!!”

 The track is full of loud cheering even before
the train comes. Without waiting for the train to come,
Rajam, Swami and friends are at Rajam’s place in no time
to work on details of their discovery, ‘the water carrying
train’.

“And this is like that....” Swami added.

“What is that?”
 “That is the main tank from where water will
come.” Rajam explained all in detail. All are smiling as
same as Swami was as they are excited about this new
activity. The day went with wonderful fun and a lot of
work under the leadership of Rajam. They dig a canal.
They needed to return home as sun returned too. It was
very early morning and surprisingly all were again there
at the back of the school and very excited to see their
water irrigation system working. Swami opened the tap
of main tank. Water started flowing through the canal.
They have dig out the path for water. And this path
covers all tree of school. All are happy seeing the water
reaching trees one by one.
But, it stopped.
“Swami, why did you turn it off?” Rajam shouted.
...
 “I did nothing! Water stopped coming out of
tank.” Actually, school tank got empty. Only 4-5 trees got
some water. Rather than saying anything to each other,
they le� for railway station with their two unlucky coins.
All are thinking in the way to station.

‘The School Train’ – a one more
 story of Swami and friends

invent - imagine...explore...&...learn 11

 I will describe you later how they come up with
their train design that day at Rajam’s place but let me
describe that they made it. Yes, a water carrying train.
They manage to get two small hand-lorrys to fill with
water and are going to use the dig out canal of earlier
experiment with slight modifications in it as the track
for one of the lorrys, I mean the trains. Yes, there will be
two trains. One train will carry water from hand pump to
school and the other train will carry this water to trees at
the back of the school. While trees are having water from
a train the other train can have water from the pump.
Such great ideas will run the train of MCC. The plan is
ready.

 From the very next morning all are working
again with double zeal. They repaired an incomplete,
unused rail path somewhat directing it towards the
school. For that they managed some rail Patris near the
track they used to have the coin game. Almost 3 days of
great efforts ends today and they are ready to have green
flag to their train system. In these days they have not
played cricket nor the coin game. They were busy in their
‘mission train’. Our train driver Swami is excited to have
his first ride. And

‘The School Train’ – a one more
 story of Swami and friends

invent - imagine...explore...&...learn 12

here it is. First train is full of water. And this time there is
no mistake they did. They won. If you will ask “what you
want? Swami.” He will answer “a whistle, with which I
can cheer. Hurrah, Rajam…. he, he”

 There is all live there. Trees are not talking. They
are singing though. MCC proved their win. Rajam is
quite happy and so same all too. The next day they come
with exact calculations of water quantity and all and a
schedule for their train system.

 In some 2-3 days MCC could manage to expand
the train routes a lot more than only school campus and
started watering trees around the school, too. It is now
almost no days ‘Albert Mission Jail’ (Swami says it so.)
will start again.

‘The School Train’ – a one more
 story of Swami and friends

invent - imagine...explore...&...learn 13

 The bell rung a�er days today. All are quite
surprised in school today seeing this creation of MCC.
Swami is frightened again today thinking that he and
team will be punished a lot for all this dig outs and
manipulations they did. All were somewhat the same.
A�er the prayer the head-master shouted “now say
me, who did this?” Innocent Swami, Rajam and friends
are standing with their hands in front to have their
punishment. In school Swami closes it eyes average twice
a day.

 “Boys, I am very sorry that I forgot about these
trees. And I thank you and congratulate you all for such
a wonderful thing you did. Well-done you all” It was
almost first time Swami is got praising form master. MCC
cheered once again and other school friends joined that
cheering.

 Malgudi Construction Club is si�ing besides
tracks today again. Swami still doesn’t go to school alone.
He remembers that “It is here.” dream.

“Rajam, believe me, the tree talked that day when I went
to get the ball back”.

“Swami......, put the coins fast, train is there!”

‘The School Train’ – a one more
 story of Swami and friends

invent - imagine...explore...&...learn 14

Theories about how children think and learn have been
put forward and debated by philosophers, educators and
psychologists for centuries.

Here, I will be describing and discussing views as well
as theories about learning and thinking in children that
have been formulated and explored over past years. I
will try in this chapter to give a brief overview of theories
and thoughts by different schools of thinking, from
Pavlov to Papert. The core idea of constructivism and
constructionism are discussed after that. Some of the
experiments conducted with children are also described
in brief. At the end I will put forward some thoughts which
lead me to this wonderful project.

An overview

He was Ivan Pavlov who came up with the simple
concept of classical conditioning which has lead to
an overwhelmingly successful multi-level approach
to investigate into the mechanisms of learning. Today
research on classical conditioning has increased to a
complexity level that is hardly comprehensible but to a few
experts in the various fields this science has spawned.

In the beginning of the 20th century, Jean Piaget
conducted a program of naturalistic research that
has profoundly affected our understanding of child
development. This general theoretical framework of Piaget
is called ‘genetic epistemology’, (Piaget 1969) because
he was primarily interested in how knowledge developed
in human organisms. Piaget had a background in both
Biology and Philosophy and concepts from both these
disciplines influences his theories and research of child
development.

From Pavlov to Piaget & from Bruner to Papert

images courtesy of Lego seriousplay

invent - imagine...explore...&...learn 15

The theory of ‘genetic epistemology’ is basically a concept
about cognitive structure. Cognitive structures (i.e.
Schemas) are patterns of physical or mental action that
underlie specific acts of intelligence and correspond
to stages of child development. There are four primary
cognitive structures (i.e., development stages) according to
Piaget: sensorimotor, preoperational, concrete operational
and formal operational. In the sensorimotor stage (0-
2 years), intelligence takes the form of motor actions.
Intelligence in the preoperational period (3-7 years)
is intuitive in nature. The cognitive structure during the
concrete operational stage (7/8-11 years) is logical
but depends upon concrete referents. In the final stage
of formal operations (12-15 years), thinking involves
abstractions.

Cognitive structures change through the processes
of adaptation: assimilation and accommodation.
Assimilation involves the interpretation of events in terms
of existing cognitive structure whereas accommodation

refers to changing the cognitive structure to make sense
of the environment. Cognitive development consists of
a constant effort to adapt to the environment in terms
of assimilation and accommodation. In this sense,
Piaget’s theory is similar in nature to other constructivist
perspectives of learning (e.g., Bruner, Vygotsky).

While the stages of cognitive development identified by
Piaget are associated with characteristic age spans, they
vary for every individual. Furthermore, each stage has
many detailed structural forms. For example, the concrete
operational period has more than forty distinct structures
covering classification and relations, spatial relationships,
time, movement, chance, number, conservation and
measurement. Similar detailed analysis of intellectual
functions is provided by theories of intelligence such as
Guilford, Gardner, and Sternberg.

Vygotsky’s theory suggests that social interaction plays
a fundamental role in the development of cognition.
(Vygotsky 1962) Vygotsky states: “Every function in the
child’s cultural development appears twice: first, on
the social level, and later, on the individual level; first,
between people (interpsychological) and then inside the
child (intrapsychological). This applies equally to voluntary
attention, to logical memory, and to the formation of
concepts. All the higher functions originate as actual
relationships between individuals.”

A major theme in the theoretical framework of J. Bruner
is that learning is an active process in which learners
construct new ideas or concepts based upon their
current/past knowledge. (Bruner 1990) The learner selects
and transforms information, constructs hypotheses, and
makes decisions, relying on a cognitive structure to do so.
Cognitive structure (i.e., schema, mental models) provides
meaning and organization to experiences and allows the
individual to ‘go beyond the information given’.

From Pavlov to Piaget & from Bruner to Papert

invent - imagine...explore...&...learn 16

A mathematician and one of the pioneers of AI at MIT, Dr.
Seymour Papert is internationally recognized as the seminal
thinker about ways in which computers can change
learning. Dr. Papert pursued mathematical research at
Cambridge University from 1954-1958. He then worked
with Jean Piaget at the University of Geneva from 1958-
1963. It was this collaboration that led him to consider of
understanding how children learn and think.

Papert proposed ‘constructionism’ as a theory of learning
and education. He proposes that Constructionism is based
on two different senses of ‘construction.’ It is grounded
in the idea that people learn by actively constructing new
knowledge, rather than having information poured into their
heads. (Papert 1980) Moreover, constructionism asserts
that people learn with particular effectiveness when they
are engaged in constructing personally meaningful artifacts
(such as computer programs, animations, or robots). To
show his ideas to world Papert and colleagues at MIT
media lab came up with a wonderful turtle of LOGO. Still
today it is a very powerful language and is taught as a part
of school curriculum. So many flavors of LOGO in different
languages are available.

Constructivism and constructionism

While exploring about constructivism one can trace back
to the eighteenth century and the work of the philosopher
Giambattista Vico who emphasized that humans can
understand only what they have themselves constructed.
A great many philosophers and educationalists have
worked with these ideas, but the first major contemporaries
to develop a clear idea of what constructivism consists
in were Jean Piaget and John Dewey, to name but a
few. Vico proposed Constructivism as a philosophy
of learning. Constructivism takes an interdisciplinary
perspective, inasmuch as it draws upon a diversity of
psychological, sociological, philosophical, and critical
educational theories.

In the constructivist paradigm, the accent is on the learner
rather than the teacher. It is the learner who interacts with
his or her environment and thus gains an understanding
of its features and characteristics. The learner constructs
his own conceptualizations and finds his own solutions
to problems, mastering autonomy and independence.
According to constructivism, learning is the result of
individual mental construction, whereby the learner learns
by dint of matching new against given information and
establishing meaningful connections. In constructivist
thinking, learning is inescapably affected by the context
and the beliefs and attitudes of the learner. Here, learners
are given more latitude in becoming effective problem
solvers, identifying and evaluating problems, as well as
deciphering ways in which to transfer their learning to these
problems.

From Pavlov to Piaget & from Bruner to Papert

invent - imagine...explore...&...learn 17

If a child is able to perform in a problem solving situation,
a meaningful learning should then occur because he
has constructed an interpretation of how things work
using pre-existing structures. This is the theory behind
Constructivism. By creating a personal interpretation of
external ideas and experiences, constructivism allows
children the ability to understand how ideas can relate to
each other and pre-existing knowledge.

While talking about constructivism, it is very important
to discuss the theories of John Dewey, Jean Piaget,
and Jerome Bruner that have certainly influenced our
stance toward the nature of learning and teaching.
As Dewey proposed, knowledge emerges only from
situations in which learners have to draw them out of
meaningful experiences. Further, these situations have to
be embedded in a social context, such as a classroom,
where children can take part in manipulating materials and,
thus, forming a community of learners who construct their
knowledge together. Children cannot learn by means of
rote memorization; they can only learn by ‘directed living,’
whereby concrete activities are combined with theory. The
obvious implication of Dewey’s theory is that children must
be engaged in meaningful activities that induce them to
apply the concepts they are trying to learn.

Piaget’s constructivism is premised on his view of the
psychological development of children. Within his theory,
the basis of learning is discovery: ‘To understand is to
discover, or reconstruct by rediscovery and such conditions
must be complied with if in the future individuals are to be
formed who are capable of production and creativity and
not simply repetition’. According to Piaget, children go
through stages in which they accept ideas they may later
discard as wrong. Understanding, therefore, is built up step
by step through active participation and involvement.

According to Bruner, learning is a social process,
whereby children construct new concepts based on
current knowledge. The children selects information,
constructs hypotheses, and makes decisions, with the
aim of integrating new experiences into his existing mental
constructs. It is cognitive structures that provide meaning
and organization to experiences and allow learners to

From Pavlov to Piaget & from Bruner to Papert

invent - imagine...explore...&...learn 18

go beyond the boundaries of the information given. For
him, learner independence, learning through encouraging
children to discover new principles of their own, lies at the
heart of effective learning.

For Hein, constructivism, although it appears radical on
an everyday level, ‘is a position which has been frequently
adopted ever since people began to ponder epistemology’.
According to him, we have to recognize that knowledge is
not “out there,” independent of the knower, but knowledge
is what we construct for ourselves as we learn. Besides,
we have to concede that learning is not tantamount to
understanding the “true” nature of things, nor is it (as Plato
suggested) akin to remembering perfect ideas, ‘but rather
a personal and social construction of meaning out of the
bewildering array of sensations which have no order or
structure besides the explanations…which we fabricate for
them’.

Besides providing opportunities for independent thinking,
constructivism allows children to take responsibility for their
own learning, by framing questions and then analyzing
them. Reaching beyond simple factual information, learners
are induced to establish connections between ideas and
thus to predict, justify, and defend their ideas.

‘Learning is contextual: we do not learn
isolated facts and theories in some abstract
ethereal land of the mind separate from the
rest of our lives: we learn in relationship
to what else we know, what we believe, our
prejudices and our fears. On reflection, it
becomes clear that this point is actually a
corollary of the idea that learning is active
and social. We cannot divorce our learning
from our lives’

- Hein.

From Pavlov to Piaget & from Bruner to Papert

invent - imagine...explore...&...learn 19

Some experiments

The best way to help understand the words of this
great philosophers and psychologists was to observe
and interact with children. From my various projects on
designing for children as well as my interest to interact and
play with them have given me some unique perspectives.
To validate these perspectives and intuition, I gone through
some experiments with children of different ages.

It was a compass box. I have thought they would at most
come up with imagine it as a car or a building block. No,
it was not only a compass box nor only a car, it was one’s
cricket bat, it was a space-shuttle(one young astronomer
suggested), it was a harmonium, and a fridge, was a
laptop(when opened), was Mickey’s house and was a
mobile phone, too. And so many other things, that was. I
had given children a compass box with a figure of Mickey
Mouse on it and asked them to think what that compass
box can be other than the compass box.

I provided them with some random pictures of objects.
A cycle, a monkey, a key, a car, a factory, a crow, star,
trees, and some clouds. Interestingly, they came up with
some wonderful imaginative stories that I and you are not
able to imagine. Not only that the stories were full relations
and events that ‘when the cloud touched the car, it
became red. Monkey was there on his cycle. And so, on…’
The children were actually moving the pictures to show
how the objects interact in their stories.

Some other interesting experiments were to create worlds.
Children were asked to do role playing in groups. They
themselves came up with managing individual roles and
what the one will do. It was a post office, and I still can’t
believe that they were that clever to explain what a post
office is. One other group role played a hotel. Families and
couples were there to have food. Counter man was billing
and waiter was there to serve and take orders.

The core idea behind these and some other experiments
was to have a better understanding about children’s
thinking and imaginations. To understand hows and whats
about children, these experiments were the best medium,
I think.

From Pavlov to Piaget & from Bruner to Papert

invent - imagine...explore...&...learn 20

I think …

Thus, the interaction, observation and a lot more
experiments in the same line refined some of my thoughts
and I could come up with some wonderful inferences like,

 Children love activities like storytelling, role-playing
 and World creation

 They ‘Do, Relate, Perform’.

 We can’t imagine that ‘what they can imagine’.

 They are ‘Ready to learn new things’.

 This is that
 . Children can find use for things other than it is.
 . They can imagine something as something else.

 This is like that
 . Can relate to something they have seen, the
 behavior, the look,…

The constructivist approach to learning is based on
a combination of a subset of research within cognitive
psychology and a subset of research within social
psychology. The basic premise is that an individual
learner must actively “build” knowledge and skills and
that information exists within these built constructs rather
than in the external environment. However, all advocates
of constructivism also agree that it is the individual’s
processing of stimuli from the environment and the
resulting cognitive structures, that produce adaptive
behavior, rather than the stimuli themselves.

As Piaget suggested, the cognitive structure during the
concrete operational stage (7/8-11 years) is logical but
depends upon concrete referents. In this stage children are
learning by exploring things, events, and actions around.
They learn concepts by validating by exploring their
conceptual models about something. Even the theories
behind the constructivist approach say that the child’s
learning is done in a hands-on approach. The children
learn by doing, and not by being told what will happen.
They are left to make their own inferences, discoveries and
conclusions and imaginations.

With this base of thoughts, theories, interactions and
inferences, I moved ahead in search of something that i
dream for. ‘invent’. That is a programming language for
children.

From Pavlov to Piaget & from Bruner to Papert

invent - imagine...explore...&...learn 21

Inferences, insights, an inner urge and intuition, all together
led me to the wonderful project ‘invent’. I think the reasons
having ‘a programming language for children’ are quite
intuitive to me. I put them in words to explain in brief.

A medium to think

A pre-operational stage child needs something to touch
when he counts. He counts things by touching them one
by one with his parallel process of speaking it. Later he
learns to use his fingers to do the same and also silently.
With those fingers he learns and applies concepts of
summation and subtraction. Having the medium of fingers
or things to touch and count helps comprehend the
concepts much better. A medium to think and explore
one’s imagination will definitely be a great help to learning
and understanding the world.

As I mentioned earlier there is no question that a human
with a goal wants to have the sub-goals ready made
and at hand. One shouldn’t have to learn about internal
combustion engines, or even just hand cranking it, in
order to drive an automobile. And agents that can be told
goals and can go off and solve them have been valuable
and sought after for as long as humanity has endured.
On the other hand, it takes a very special value system for
everyone to be able to exist as learning creatures, indeed
as humans at all, in the presence of an environment that
does all for them. The key idea is to have something to
explore one’s thoughts, ideas, and imagination; may be a
medium to think.

Why a programming language?

invent - imagine...explore...&...learn 22

Why a programming language?

The language to communicate

At some point it is necessary to understand something
about thermodynamics and waiting until then to try to learn
it doesn’t work. Nature’s rule is “use it or lose it”. Most
social systems that have incorporated intelligent slaves or
amanuenses have “lost it”. In fact the most never gained it
to lose. In a ideal imaginative world in which we can make
just about anything we desire, and almost everything we
do can be replaced with vicarious experience, we have to
‘decide to do’ the activities that make us into actualized
humans. We have to decide to exercise, to not eat too
much fat and sugar, to learn, to read, to explore, to
experiment, to make, to love, to think. In short, to exist.
(Alan 1982)

The analogy to reading-writing by Alan Kay was the
easiest to see. As he says ‘reading’ is the skill to be able
to understand and use messages represented as gestures
in a medium whose conventions are in close agreement
between writer and reader, then the equivalent of reading
on a computer would require the invention of a user-
interface language that could universally frame the works of
many thousands of authors whose interests would range
far beyond those of the interface designers. ‘Writing’ on the
other hand requires the end-users to somehow construct
the same kinds of things that they had been reading. 21st
century humans that don’t understand the hows and
whys of their technologies are not in a position to make
judgments and shape futures.

invent - imagine...explore...&...learn 23

Learning problem solving

Traditional cultures haven’t set up schools. Children are set
up by nature to learn the world around them by watching
adult activity and playing imitation games. Most of the
important things concerning what it means to be a member
of a traditional culture and how to make a living in it are out
in the open enough for children to learn through imitative
play.

One of the special insights was that a main task of early
education was to reshape the ordinary common sense
that every child picks up into the ‘uncommon sense’
that is needed as the foundation for many modern ideas.
Much of today’s motivation for the education of children
is vocational, to prepare children for the job market. More
important is the need to raise problem solvers to join the
‘big conversation’ with enough background, thinking skills,
and points of view to participate fully in the development.
But there are larger considerations than job and problem
solving. These have to do with actualizing the human
possibilities that are as yet unrealized in children. With
this in mind, we can argue not just for learning to read
and write, but for fluent learning, and to be able to read
literature and think and write about ideas. This gets to
some of the older reasons for education. Deep experiences
with deep ideas help grow deep people.

Why a programming language?

invent - imagine...explore...&...learn 24

Learning how to learn

Learning how to exist needs not only learning how to repair
one’s car or how an aeroplane works. A wonderful aspect
to learn is ‘how to learn’. By this, I mean that one should
be able not only to apply his learning about something to
some other problems but also be able to learn from his
experiences about the approaches as well how to have
such approaches. It is like that. ‘I know that if I will think
about it like this I may get some solution, why can’t I do
this?’ At overall one should be an ever learning and thinking
creature. That is the life.

These are some core ideas to justify the need of such a
programming language for children. I am not saying that
this is the only way to do it. There might be other things.
I found it interesting to have such a medium to think and
explore. That is ‘invent’.

Why a programming language?

invent - imagine...explore...&...learn 25

In simple words, programming is ‘designing and writing
a computer program’. A computer cannot understand
the words spoken by us, and this warrants the need
of a language, which can prompt the machine to carry
the functions we desire. The pursuit of developing the
perfect computer language, which started from the simple
punched cards and algorithms, has taken a whole new
dimension today.

The present day computer languages are immensely
capable in making the computer perform varied tasks
in fields like art, engineering, medical science etc. A
complete programming language includes components
like, the computational model, the syntax and semantics
of programs, and the other pragmatic considerations that
shape the language.

A lot about children and learning as well the vision behind
the project are discussed in the earlier chapters. Here
I try to provide a little background of programming and
programming languages.

What is programming?

Programming is the activity that involves a person writing
instructions in a language closely related to the English
language, in order to make a computer perform useful
operations. These instructions collectively form a program,
which is like a “recipe” for a computer, which it follows in
order to perform useful operations. This program is then
compiled by a compiler, into a form that the computer
understands. This compiled program can then be run on a
computer. The programmer must decide what the program
needs to do, develop the logic of how to do it, and write
instructions for the computer in a programming language
that the computer can translate into its own language and
execute.

Learning how to program a computer is very different from
learning how to use a computer. The purpose of writing a
computer program is to have the computer solve a specific
problem for you, in a specific and repeatable way. As
such, the programmer must understand the problem in all
of its ramifications and then develop a logical solution to
the problem that can be understood by the computer.

Children & programming

invent - imagine...explore...&...learn 26

Ever since the invention of Charles Babbage’s difference
engine in 1822, computers have required a means of
instructing them to perform a specific task. This means is
known as a programming language. Computer languages
were first composed of a series of steps to wire a particular
program; these morphed into a series of steps keyed into
the computer and then executed; later these languages

acquired advanced features such as logical branching and
object orientation. The computer languages of the last fifty
years have come in two stages, the first major languages
and the second major languages, which are in use today.
More than 3000 programming languages are there
available, today.

Children & programming

invent - imagine...explore...&...learn 27

Programming languages
[Taken from Ferguson, Andrew. The History of Computer Programming
Languages [online]. Available from: http://www.princeton.edu/~ferguson/
adw/programming_languages.shtml. accessed on 21st February, 2005]

In the beginning, Charles Babbage’s difference engine
could only be made to execute tasks by changing the
gears which executed the calculations. Thus, the earliest
form of a computer language was physical motion.
Eventually, physical motion was replaced by electrical
signals when the US Government built the ENIAC in 1942.
It followed many of the same principles of Babbage’s
engine and hence, could only be “programmed” by
presetting switches and rewiring the entire system for each
new “program” or calculation. This process proved to be
very tedious.

In 1945, John Von Neumann was working at the Institute
for Advanced Study. He developed two important concepts
that directly affected the path of computer programming
languages. The first was known as “shared-program
technique”. This technique stated that the actual computer
hardware should be simple and not need to be hand-wired
for each program. Instead, complex instructions should
be used to control the simple hardware, allowing it to be
reprogrammed much faster.

The second concept was also extremely important to the
development of programming languages. Von Neumann
called it “conditional control transfer”. This idea gave rise
to the notion of subroutines, or small blocks of code that
could be jumped to in any order, instead of a single set of
chronologically ordered steps for the computer to take.
The second part of the idea stated that computer code
should be able to branch based on logical statements such
as IF (expression) THEN, and looped such as with a FOR
statement. “Conditional control transfer” gave rise to the
idea of “libraries,” which are blocks of code that can be
reused over and over.

In 1949, a few years after Von Neumann’s work, the
language Short Code appeared. It was the first computer
language for electronic devices and it required the
programmer to change its statements into 0’s and 1’s
by hand. Still, it was the first step towards the complex
languages of today. In 1951, Grace Hopper wrote the
first compiler, A-0. A compiler is a program that turns the
language’s statements into 0’s and 1’s for the computer
to understand. This lead to faster programming, as the
programmer no longer had to do the work by hand.

Children & programming

invent - imagine...explore...&...learn 28

In 1957, the first of the major languages appeared in
the form of FORTRAN. Its name stands for FORmula
TRANslating system. The language was designed at IBM
for scientific computing. The components were very simple,
and provided the programmer with low-level access to
the computers innards. Today, this language would be
considered restrictive as it only included IF, DO, and GOTO
statements, but at the time, these commands were a big
step forward. The basic types of data in use today got
their start in FORTRAN, these included logical variables
(TRUE or FALSE), and integer, real, and double-precision
numbers.

Though FORTAN was good at handling numbers, it was
not so good at handling input and output, which mattered
most to business computing. Business computing
started to take off in 1959, and because of this, COBOL
was developed. It was designed from the ground up as
the language for businessmen. Its only data types were
numbers and strings of text. It also allowed for these to
be grouped into arrays and records, so that data could be
tracked and organized better. It is interesting to note that a
COBOL program is built in a way similar to an essay, with
four or five major sections that build into an elegant whole.
COBOL statements also have a very English-like grammar,
making it quite easy to learn. All of these features were
designed to make it easier for the average business to
learn and adopt it.

In 1958, John McCarthy of MIT created the LISt Processing
(or LISP) language. It was designed for Artificial Intelligence
(AI) research. Because it was designed for such a highly
specialized field, its syntax has rarely been seen before or
since. The most obvious difference between this language
and other languages is that the basic and only type of data
is the list, denoted by a sequence of items enclosed by
parentheses. LISP programs themselves are written as a
set of lists, so that LISP has the unique ability to modify
itself, and hence grow on its own. The LISP syntax was
known as “Cambridge Polish,” as it was very different from
standard Boolean logic:

 x V y - Cambridge Polish, what was used to
 describe the LISP program
 OR(x,y) - parenthesized prefix notation, what was
 used in the LISP program
 x OR y - standard Boolean logic

LISP remains in use today because its highly specialized
and abstract nature.

The Algol language was created by a committee for
scientific use in 1958. It’s major contribution is being the
root of the tree that has led to such languages as Pascal,
C, C++, and Java. It was also the first language with a
formal grammar, known as Backus-Naar Form or BNF.
Though Algol implemented some novel concepts, such
as recursive calling of functions, the next version of the
language, Algol 68, became bloated and difficult to use.
This lead to the adoption of smaller and more compact
languages, such as Pascal.

Children & programming

invent - imagine...explore...&...learn 29

Pascal was begun in 1968 by Niklaus Wirth. Its
development was mainly out of necessity for a good
teaching tool. In the beginning, the language designers
had no hopes for it to enjoy widespread adoption. Instead,
they concentrated on developing good tools for teaching
such as a debugger and editing system and support for
common early microprocessor machines which were in use
in teaching institutions.

Pascal was designed in a very orderly approach; it
combined many of the best features of the languages
in use at the time, COBOL, FORTRAN, and ALGOL.
While doing so, many of the irregularities and oddball
statements of these languages were cleaned up, which
helped it gain users. The combination of features, input/
output and solid mathematical features, made it a highly
successful language. Pascal also improved the “pointer”
data type, a very powerful feature of any language that
implements it. It also added a CASE statement that allowed
instructions to branch like a tree manner. Pascal also
helped the development of dynamic variables, which could
be created while a program was being run, through the
NEW and DISPOSE commands. However, Pascal did not
implement dynamic arrays, or groups of variables, which
proved to be needed and led to its downfall. Wirth later
created a successor to Pascal, Modula-2, but by the time
it appeared, C was gaining popularity and users at a rapid
pace.

C was developed in 1972 by Dennis Ritchie while working
at Bell Labs in New Jersey. The transition in usage from
the first major languages to the major languages of today
occurred with the transition between Pascal and C. Its
direct ancestors are B and BCPL, but its similarities to
Pascal are quite obvious. All of the features of Pascal,
including the new ones such as the CASE statement are
available in C. C uses pointers extensively and was built
to be fast and powerful at the expense of being hard to
read. But because it fixed most of the mistakes Pascal
had, it won over former-Pascal users quite rapidly. Ritchie
developed C for the new Unix system being created at
the same time. Because of this, C and Unix go hand in
hand. Unix gives C such advanced features as dynamic
variables, multitasking, interrupt handling, forking, and
strong, low-level, input-output. Because of this, C is very
commonly used to program operating systems such as
Unix, Windows, the MacOS, and Linux.

In the late 1970’s and early 1980’s, a new programming
method was being developed. It was known as Object
Oriented Programming, or OOP. Objects are pieces of
data that can be packaged and manipulated by the
programmer. Bjarne Stroustroup liked this method and
developed extensions to C known as “C With Classes.”
This set of extensions developed into the full-featured
language C++, which was released in 1983. C++ was
designed to organize the raw power of C using OOP,
but maintain the speed of C and be able to run on many
different types of computers. C++ is most often used in
simulations, such as games. C++ provides an elegant way
to track and manipulate hundreds of instances of people
in elevators, or armies filled with different types of soldiers.
It is the language of choice in today’s Computer Science
courses.

Children & programming

invent - imagine...explore...&...learn 30

In the early 1990’s, interactive TV was the technology of
the future. Sun Microsystems decided that interactive TV
needed a special, portable (can run on many types of
machines), language. This language eventually became
Java. In 1994, the Java project team changed their focus
to the web, which was becoming “the cool thing” after
interactive TV failed. The next year, Netscape licensed
Java for use in their internet browser, Navigator. At this
point, Java became the language of the future and several
companies announced applications which would be written
in Java, none of which came into use.

Microsoft has extended BASIC in its Visual Basic (VB)
product. The heart of VB is the form, or blank window on
which you drag and drop components such as menus,
pictures, and slider bars. These items are known as
“widgets.” Widgets have properties (such as its color) and
events (such as clicks and double-clicks) and are central
to building any user interface today in any language.
VB is most often used today to create quick and simple
interfaces to other Microsoft products such as Excel and
Access without needing a lot of code, though it is possible
to create full applications with it.

Programming languages have been under development for
years and will remain so for many years to come. They got
their start with a list of steps to wire a computer to perform
a task. These steps eventually found their way into software
and began to acquire newer and better features. The first
major languages were characterized by the simple fact that
they were intended for one purpose and one purpose only,
while the languages of today are differentiated by the way
they are programmed in, as they can be used for almost
any purpose. And perhaps the languages of tomorrow
will be more natural with the invention of quantum and
biological computers.

There are different types of computer languages developed
at different point of time, for different needs. A generic
classification of language types is as follows: Logical
Programming, Functional Programming, Imperative
Programming, Concurrent Programming and Object
orientated Programming. We can also have a genetic
classification of programming languages, like which
language derived from which and when.

A lot more classification schemas are there. Interestingly, I
could not manage to have a classification from the user’s
perspective as there is none such existing.

Children & programming

1957 FORTRAN
1958 ALGOL
1960 LISP
1960 COBOL
1962 APL
1962 SIMULA
1964 BASIC
1964 PL/I
1966 ISWIM
1970 Prolog
1972 C
1975 Pascal
1975 Scheme
1977 OPS5
1978 CSP
1978 FP
1980 dBASE II
1983 Smalltalk-80
1983 Ada
1983 Parlog
1984 Standard ML
1986 C++
1986 CLP(R)
1986 Eiffel
1988 CLOS
1988 Mathematica
1988 Oberon
1989 HTML

invent - imagine...explore...&...learn 31

Children and programming languages

Extensive study of attempts to have a programming
language for children or end-users has provided me a
wonderful picture. Though the most interesting finding of
this study was that, the final aims behind these efforts to
have a programming language by various people were
different. It was quite a wonderful experience studying
these designs like KIDSIM, BASIC, LOGO, SmallTalk,
Squeak, JUDO, JOSS, ... there are lots of. Here I cite some
of them which I found inspiring and interesting.

 BASIC
 JOSS
 LOGO
 KIDSIM
 Squeak and Smalltalk
 HyperCard
 MicroWorlds

BASIC

I love BASIC. The one is the first language which
introduced me to the wonderful world of computing in my
2nd standard. Many of us know this language of
10 PRINT “HELLO”,
GOTO 50, ….
BASIC is often taught as a first programming language
even today. It is developed in 1964 by John Kemeny
and Thomas Kurtz. Though, BASIC is a limited language
and was designed for non-computer science people it
has provided a wonderful platform to its users as well as
designers of other programming languages. Statements
are chiefly run sequentially, but program control can change
based on IF..THEN, and GOSUB statements which execute
a certain block of code and then return to the original point
in the program’s flow.

Children & programming

invent - imagine...explore...&...learn 32

JOSS

JOSS (an acronym for JOHNNIAC Open Shop System),
was one of the very first interactive, time sharing
programming languages. JOSS I, developed by J. Clifford
Shaw at RAND was first implemented, in beta form, on the
JOHNNIAC computer in May 1963. The full implementation
was deployed in January 1964, supporting 5 terminals
and the final version, JOSS In, supporting 10 terminals,
was deployed in January 1965. JOSS was written in a
symbolic assembly language called EasyFox (E and F in
the US miliary’s phonetic alphabet of that time). EasyFox
was also developed by Cliff Shaw. JOSS was dubbed “The
Helpful Assistant” and is renown for its conversational user
interface. Originally green/black typewriter ribbons were
used in its terminals with green being used for user input
and black for the computer’s response. Any command that
was not understood elicited the response “EH?”. A large
number (20 or more) of variants of JOSS were developed
and implemented on a variety of platforms, including one
for the IBM System/360 which was still in use up to the mid
1970s. In overall, JOSS was an invention before its time.

Children & programming

invent - imagine...explore...&...learn 33

LOGO

The Logo programming language is an adaptation
by Wally Feurzeig and Seymour Papert of the Lisp
programming language that is easier to read. One could
say that Logo is Lisp without the parentheses. Today, it
is known principally for its “turtle graphics”, but it also
has significant list handling facilities, file handling and
I/O facilities. Logo can be used to teach most computer
science concepts, as Brian Harvey does in his “Computer
Science Logo Style” trilogy. It can also be used to prepare
“microworlds” for students to investigate. There are over
130 implementations of Logo, each of which has its own
strengths. A popular cross-platform implementation is
UCBLogo. MSWLogo, its freeware Windows derivative,
is commonly used in schools in the United Kingdom.
Comenius Logo is available in Dutch, German, Czech etc.
and is worth considering. A modern derivative of Logo is
a variation that allows thousands of “turtles”, each moving
independently. There are two popular implementations:
MIT StarLogo and NetLogo. These derivatives allow for the
exploration of emergent phenomena and come with many
experiments in social studies, biology, physics, and many
other sciences. Although the focus is on the interactions of
a large number of independent agents, these variations still
capture the original flavor of Logo. The idea is that a turtle
with a pen strapped to it can be instructed to do simple
things like move forward 100 spaces or turn around. From
these building blocks you can build more complex shapes
like squares, triangles, circles--using these to draw houses
or sail boats. The turtle moves with commands that are
relative to its own position, “LEFT 90” meant rotate left by
90 degrees. A child could understand (and predict and
reason about) the turtle’s motion by imagining what they
would do if they were the turtle. Papert called this “body
syntonic” reasoning.

Children & programming

invent - imagine...explore...&...learn 34

KIDSIM

KidSim is an environment that allows children to create
their own simulations. KidSim enables children to specify
how characters are to behave and interact by providing
a special graphical interface for specifying the spatial
relations between characters. In addition, KidSim provides
a graphical interface for creating, testing and manipulating
properties, which maintain information about the character.
Children can create animation and sound to make their
simulations more exciting. Children are taught to use the
program with a demonstration technique in which the
system is set on “record mode.” Then the child goes
through the program while the computer records so that
users can concentrate on the game alone and not on the
programming of their game.

KidSim has been changed and renamed Cocoa. Children
have the option of putting their games that they create
through Cocoa up on the internet.

Children & programming

invent - imagine...explore...&...learn 35

Squeak

Squeak is a free open source implementation of the
Smalltalk programming language. It is available on many
platforms and the programs produced on one platform
run bit-identical on the other platforms. It comes with an
implementation of Morphic, Self’s graphical, direct object-
manipulation framework.

Squeak incorporates many of the elements Alan Kay
proposed in the Dynabook concept, which he formulated
in the 1960s. In overall, Squeak is a wonderful environment
for children.

Smalltalk

Smalltalk is a dynamically typed object oriented
programming language designed at Xerox PARC by Alan
Kay, Dan Ingalls, Ted Kaehler, Adele Goldberg, and others
during the 1970s. The language was generally released as
Smalltalk-80 and has been widely used since. Smalltalk’s
big ideas include: “Everything is an object.” Strings,
integers, booleans, class definitions, blocks of code, stack
frames, memory are all represented as objects. Execution
consists of sending messages between objects. Any
message can be sent to any object; the receiver object
determines whether this message is appropriate and what
to do to process it. Everything is available for modification.
If you want to change the IDE, you can do it, in a running
system, without stopping to recompile and restart. If you
want a new control construct in the language, you can
add it. In some implementations, you can change even the
syntax of the language.

Children & programming

invent - imagine...explore...&...learn 36

HyperCard

HyperCard is an application program and a simple
programming environment produced by Apple Computer
which runs only in Mac OS versions 9 or earlier. It most
closely resembles a database application in concept, in
that it stores information, but unlike traditional database
systems HyperCard is graphical, very flexible and trivially
easy to modify. In addition HyperCard includes HyperTalk,
a powerful and easy to use programming language to
manipulate data and the user interface. HyperCard users
often used it as a programming system as opposed
to a database. HyperCard, a hypertext programming
environment for the Macintosh introduced by Apple in 1987
was finally withdrawn from sale in March, 2004.

The HyperCard model consists of cards, and collections of
cards, called stacks. You can connect the cards in various
ways, and leaf through them the way you would with a
set of Rolodex cards. In addition to data, each card can
contain graphics and buttons that trigger other events,
such as sound or video. Each object in a HyperCard
system; stack, card, text field, button, or background
can have a script associated with it. A script is a set of
instructions that specify what actions should take place
when a user selects an object with the mouse or when
some other event occurs.

Children & programming

invent - imagine...explore...&...learn 37

MicroWorlds

MicroWorlds is an environment in which students explore
and test their ideas in this idea exploration and project
creation environment. MicroWorlds EX is can be used to
create: science simulations, mathematical explorations
or interactive multimedia stories. In fact, MicroWorlds is a
enhanced flavor of LOGO programming language. In one
sense it is a LOGO with capabilities of GUI, Music and a
ready-made library of characters and objects to use in
simulations.

There are a lot more other nice tools for children. Just to
name a few, there are KIDSIM, Stagecast Creator, Klik
and Play… and the list goes on. Also, there are some nice
research projects to design a programming language for
children. ‘invent’ is my kind effort to add a one more name
in the list.

Children & programming

invent - imagine...explore...&...learn 38

Children & programming

Other than these milestones mentioned there are lot more
other interactive environments played important role in my
studies in understanding about programming languages,
children and their interaction with them. Some of them like
KIDPAD are creativity or storytelling tools. There are lots of
variations to the languages like LOGO are there available
in different languages as well as with some changes in
that. Lots of simulation tools for children are also there for
children.

invent - imagine...explore...&...learn 39

Not only these environments but also some of the very
powerful concepts like programming by example,
programming by demonstration used in these languages
and environment provided me a powerful base to validate
my thoughts and come up with ‘invent’ with much powerful
interaction and vision. ‘Programming by doing’ concept
of TOPOBO or ‘rule making’ of Stagecast Creator and
‘undo’ icon of Microworlds to on-place menu of Squeak
are some of the really wonderful designs.

Children & programming

invent - imagine...explore...&...learn 40

I do programming from my 2nd standard. Domain
knowledge in the field of programming as well as my liking
to work with children led me to this wonderful project.
Thus, experience, inferences, analysis, evaluations and
most importantly my intuition are there behind ‘invent’.

What it will be?
How the child will do it?
How it will help?

The unclear idea about ‘invent’ started with such questions
and led me to ideation. I will try to describe it in brief in the
chapter.

I started with studying and analyzing …

. Languages (programming)

. Learning theories

. Designs

. Interactions
 ...

Ideation

‘I can’t understand why people are frightened
of new ideas. I’m frightened of the old ones.’

- John Cage

invent - imagine...explore...&...learn 41

From different programming languages to learning theories
and from child psychology to interaction design paradigms
gave me a wonderful vision towards actualizing my dream.
I love to work with children and I am very lucky that I got
good opportunities to do the same with my projects,
hobbies and interests as well. Here are some of wonderful
opportunities of my interaction with children.

. MARBO- an MSR research project to design a
 communication device for children
. ‘Ghost in the machine’- special project
. Teaching computer to kids at ACT computer center,
 Palanpur
. Teaching table-tennis in vacation to children
. 5th std. Computer class at VidyaMandir, Palanpur
. Interacting with children at New Era School, Mumbai and
 Kendriya Vidyalaya, IIT Bombay
. Working under Prof. Ravi Poovaiah on
 www.designforchildren.com

Ideation

invent - imagine...explore...&...learn 42

Major of these interactions, analyses and intuitions are
captured here through inferences. ‘How children think and
learn?’ ‘Why they love story-telling, role playing,…?’ ‘What
will help them learn? not only maths and English but also to
solve problem, to create something or to invent’ Answers
to these questions are what motivated to invent ‘invent’.

Inferences
. Children love activities like storytelling, role-playing and
 World creation
. They ‘Do, Relate, Perform’.
. We can’t imagine that ‘what they can imagine’.
. They are ‘Ready to learn new things’.
. This is that
 Children can find use for things other than it is.
 They can imagine something as something else.
 Ex. A pen as a rocket and play flying gave with it
. This is like that
 Can relate to something they have seen the behavior,
 the look,…
 Ex. Can imagine a tree crying or a train engine
 cheering

All these led me to the equation

 Imagine…explore…&…learn

‘invent’ is
Learning by imaging
Learning by doing
Learning by exploring
A medium to create strategies, challenges, problems,
solutions

In brief,
 A medium to think and explore

Ideation

invent - imagine...explore...&...learn 43

To actualize the dream of ‘imagine…explore…&…learn’
of invent I stated down what is that can provide such
a medium. At this I have taken a unique perspective to
dealing with question. In spite of answering what should be
there I started with what they want.

From a child’s perspective,
Invent is something with which,
One
. Can create anything.
. Can decide how it will look, behave or act.
. Can relate it to world and other things.
. Can instruct or order.

. Can create worlds, challenges or can tell stories.
& thus,
. Can explore one’s imagination.

To do the same, to provide them that,
I need to design a medium with which,
One
. Can create an object by drawing, coloring, selecting, …
. Can edit, duplicate ,modify,.. objects.
. Can provide properties, behaviors to those objects.
. Can relate one object to other objects of world
. Can program(instruct) objects and events
...

& fi nally the brainstorming can help come up with three
steps to ‘invent’
 1. Create
 2. Animate
 3. Instruct

Ideation

invent - imagine...explore...&...learn 44

Create

The idea is to give freedom to children to create whatever
they want. A tree, a car, an aeroplane or even his dad or
school teacher. From Pockemon to pencil the child should
be able make it. One can create objects by drawing them.
One can use colors. One can also be able move, rotate or
scale them. By placing all this objects he should be able to
create the worlds of his imagination. There will be no bound
of color, look or any other for creating anything, giving any
name to it. This I named as ‘create’.

Animate

By ‘animate’ I mean giving life to the world the child has
created. One can give life to the objects created in the
world, can make them move, run, jump, fly, …., can also
turn into something else or can. Under animate one other
important wonderful idea is to provide states to objects
(swimming, flying, small, in school, …..) and with the use of
‘create’ to decide how these states will be. With ‘animate’
child will show object how to jump, how to run, how to hit
and how to smile. Overall, animate is the magical stick with
which child should be able to liven the world.

Ideation

invent - imagine...explore...&...learn 45

Instruct

Now when he has worlds and live objects in his world a
child need to instruct them what to do , when.
When this happens ..
Do this.
If …. then ….
Do this three times
When clouds are there in the sky, do rain.
When I say ‘jump’, you jump

The wonderful ‘instruct’ will give the child the freedom to
instruct whatever they want to instruct. There are some
wonderful school of thoughts like Instruct by showing,
Instruct by selecting objects and instruction, Instruct
by changing properties and behaviors. I tried to provide
the child to instruct the way he like. In, instruct I came up
a ‘visual language’ too for these orders and instructions
to objects. Now, The child will control when the boy in his
world will swim and how. The child will decide that whether
he want to move car in which direction in his town and
when he want to horn his car.

Ideation

invent - imagine...explore...&...learn 46

‘Everything is an object’

One can create, liven and instruct any object in ‘invent’. A
tree, a car, a rocket, a school bell anything he imagines, he
can create, liven and instruct what to do and how. Even
he can have worlds of his imagination and can share or
reuse those objects. The generic structure of ‘invent’ says
‘Everything is an object’.

Ideation

invent - imagine...explore...&...learn 47

A drawing paper

With the conceptual architecture and structural design
ready in mind I started working on layouts and interaction
design issues of ‘invent’. In ‘invent’ I thought a paper as a
metaphor for the interaction space of the child. A drawing
paper, where the child will create his world of imagination.
For providing him the medium to create, animate and
instruct I came up with different designs regarding layouts,
menus, interaction methods, …

Ideation

invent - imagine...explore...&...learn 48

 well the detail interaction design of ‘invent’. Some of the
concepts used can be listed as

. Prototype based O.O. programming

. Intuitive interactions

. A visual syntax language

. Visual programming environment

. Staying in the flow (creative unfolding of something)

. Programming by demonstration
 ...

Interaction design and system design
concepts

In parallel, I was also brainstorming about how all this will
happen. I studied and analyzed a lot of concepts about
programming language design as well as interaction design
for that. The major outcome of this effort was the internal
system design of the programming language ‘invent’ as

Ideation

invent - imagine...explore...&...learn 49

Refinements

During the stage of ideation I also come up with some
refinements (mainly enhancement) to my design. I added
sound as a major feature to ‘invent’. In the later version of
concept prototype of invent I added a feature to have world
backgrounds from any drawings, painting or photograph
the child have in addition to create it by drawing. The one
more enhancement was to have a object library where the
child can save and reuse any object he has created. Even
one can share objects with other children as well as can be
able to select any image file as an object, can modify the
object as he want.

Ideation

invent - imagine...explore...&...learn 50

As the Italian poet Cesare Pavese says: ‘To know the
world, one must construct it’. And ‘invent’ is the medium
to do it for children to know about the world.

In brief,
Invent = Create + Animate + Instruct

Create: Create objects. Create world.
Animate: Give life to the objects and thus liven the world.
Instruct: Instruct/program objects what to do. (when,
where, how, ….)

‘invent’

What is ‘invent’?

Here is ‘invent’.
‘invent’ is a medium to think and explore. ‘invent’ is
an environment that allows children to explore their
imagination. ‘invent’ is the design of a programming
language for children.

‘invent’ enables children to create whatever they want to
create or imagine. It lets them specify how those objects
are to look, behave and interact by providing a special
graphical interface to do all that. Not only that, ‘invent’
also provides a way to instruct those objects what to do,
when and how. ‘invent’ is a design of a children’s computer
program that allows them to create their own worlds in
which they can explore their imaginations and by the
way they learn concepts. Thus, it provides a medium for
learning by doing, learning by exploring.

invent - imagine...explore...&...learn 51

The design

At last here I present the final concept design with all
details. A Paper is taken as a metaphor. Tools to create,
animate and instruct will be there as per need on the paper
where the child is creating his world of imagination.
The overall design of ‘invent’ is to create what ever we
want, decide how it will look, behave, act and instruct it
what to do and when. Here the design is given with its
layout as well as detailed menu structure.

‘invent’

1

2

3

4

5

invent - imagine...explore...&...learn 52

Let’s have a new world

One can create a new world. One can open, save and
export the world. Some basic operations like undo, redo as
well as zooming are also provided in the menu.

New world

Open

Save

Export

Undo

Redo

Zoom

1

‘invent’

invent - imagine...explore...&...learn 53

Create

Create menu lets the child draw anything with tools like pencil,
brush, line, square, and circle. The child can play with colors
as well can use move, rotate and scale tools in creating tree,
car, book, boy, river ….. anything. The customize space below
the basic tools also let one customize tools. Create is a context
menu. It will be there somewhat overlapping the world area when
in use. When not in use it can be minimized.

Create a New object and Save
what you have created

Create anything using
pencil, brush, lines, squares,
circles….

Customize the tools
as you want

Play with Colors of
your choice

Move, Rotate, Scale, …
whatever you have created

2

‘invent’

invent - imagine...explore...&...learn 54

Objects

Everything is an object. Object bar at the bottom
provides one with objects he created. The tree, car, boy
and river all are there to use and place to the world. One
can have any number of copies of these objects. Later
one can also edit specifi c instance of the object and save
in object bar as a separate object. One can remove the
object just by dragging them to trash bin at the left of the
object bar. One can minimize the object bar as per wish.

Save and reuse any object you
have created. create youw
world with the objects

3

‘invent’

invent - imagine...explore...&...learn 55

Animate

‘invent’ is based on several concepts like ‘Programming
by Demonstration’ and ‘Direct Manipulation
techniques’. (Cypher 1993), These techniques allow users
to create behavioral rules by demonstrating what the object
is to do in a specifi c situation. ‘Animate’ provides one with
the environment to liven the world one has created.

There are basically 3 methods ‘animate’ provides. One can
give different states to the object created. Like, one can
give a boy(an object) different looks at different conditions.
‘In school’, ‘in red t-shirt’, ‘small’, ‘happy’, ‘fallen down’
and so on. By the other two method one can even have
these states enlivened. Like the boy can be jumping, or
nodding his hand or can running. One will be able to use
these states of objects as per requirements when he is
instructing them.

The two core methods one can do all these are ‘frame
method’ and ‘record method’. In frame method one
creates frames(looks) of the object by changing color, size,
orientation, or by other drawing tools. Sequencing these
frames and playing them will give the desired state.

In record method one will be able to record what ever he
want the object to do later. One will do it and tell object
that, see, what I teach you is called jumping. Object will
be able to do the same later when needed by playing that
state. Thus, animate livens the world one has created by
enliven the objects.

Create a New state of any
object and Save it

Give Name as
per your wish

Make the
object alive

See how it looks

Record whatever you want
the object to do

Have automatic changes to
in-between stages

Record as same as you do Record as same as you do

Have automatic changes to

4

‘invent’

invent - imagine...explore...&...learn 56

handlers or supporting elements. One just needs to drag
and drop controllers to have instruction to the objects. By
very intuitive interaction methods, ‘instruct’ provides one
with a great control to one’s world. In ‘instruct’ one can
very easily decide that he wanted the car to be controlled
by the arrow keys on his keyboard. He will also instruct
the car not to go out of road he has created. One will blow
horn or say the boy that when car hits you, you fall down;
He will instruct the clouds when to rain or the sun when
to come. It seems somewhat like a dream. Yes, but this is
‘invent’ is all about. It will let one explore one’s imagination.

Instruct

The most important of all in invent is ‘instruct’. When now
one have all his objects, a world created with these objects
ready, even also he has liven the world by methods in
‘animate’, the most important thing is to say those objects
what to do and when. ‘Instruct’ is that.

Instruct has a visual syntax language. One can instruct
any object anything to do by just selecting and dragging
objects, their states programming language structures and

The Visual Language
of INVENT

Your World

Give life to the world Control time in your world

Your Objects and all
their States

Statements to
instruct

Extras…..
Controllers,
values,
modifi ers,
….

Give life to the world Control time in your world

Extras…..
Controllers,
values,

instruct

Your Objects and all
their States

5

‘invent’

invent - imagine...explore...&...learn 57

‘The’ menu

One more wonderful feature of ‘invent’ is the object context
menu. The fl oating menu encircling the object will help one
directly manipulate object in terms of ‘create’, ‘animate’ or
‘instruct’. The menu also provides one with the on-place
controls to scale, rotate and duplicate the object. In brief,
the menu is the direct use of the functional metaphoric
approach (Pranav 2004) to have in-place manipulation to
objects and thus to the world.

Duplicate

Back to object bar

Scale
Rotate

Animate
Create/Edit

Instruct

Scale

Create/Edit

0

‘invent’

invent - imagine...explore...&...learn 58

a. Everything is an object

‘invent’ propose a child to create any object by method of
drawing it, same as he draws with pencil and colors on a
paper. A child can draw a tree, a car, Pokemon, mountains,
clouds, … Everything, one draws is treated as an object
in ‘invent’. With the tools like pencil, brush and geometric
shapes like line, circle, square a child can draw any desired
object. He can color his objects with color tools. Besides
these tools ‘invent’ provides move, rotate and scale tool.
A child can move, rotate or scale the whole object as well
parts of it with them.

‘invent’

In and out of ‘invent’

Think ‘invent’ as a drawing paper for a child. A child can
draw on that paper. Not only that, he can rearrange those
objects to create a world, and as well can enliven those
objects and the world by ‘animate’. ‘invent’ also let a child
to instruct the objects of his world what to do and when.
The Poet Cesare Pavese has said ‘To know the world one
must construct it.’ This is my dream to provide children
with such a medium where they learn themselves by
exploring their ideas and understanding about the world.
‘invent’ is an effort to have a medium for children to explore
their imagination.

Some of the features of invent which make it wonderful is
mentioned here briefl y.

invent - imagine...explore...&...learn 59

b. Every object is unique

The only thing common to objects in ‘invent’ is ‘every
object is unique’. At architectural level any modified copy
of an object is treated also as a unique object. For example
if an instance of a tree is made, that instance will act as a
separate object now and any modification to that tree will
be to that tree only.

Now, if a child wants to have that object also in the object
bar to make more such trees than he can put it there to
the object bar as well. The other interesting feature ‘invent’
provides is the controlled inheritance. When one wants
to have some changes to be made to all the copies of an
object he can do it by modifying the object copy at the
object bar. For example if after having all his trees in place
in a world, if a child want to add fruits on all tree now, he
doesn’t need to do it individually for each tree. He can
select the tree at the object bar and draw mangoes on his
tree. All the trees in his world will have those mangoes.
Now if he doesn’t want those mangoes in one of the
trees then he can select the particular tree and take the
mangoes off also.

‘invent’

invent - imagine...explore...&...learn 60

1. A drawing pad

In ‘invent’ the tool ‘create’ has all the features to be used
as a drawing application. A child can draw, color and even
rearrange his created objects in a drawing.

2. A simulation tool

With ‘animate’ a child can enliven the world he has
created. A child can select any object he has created with
the ‘create’ or he can use the objects he has saved in his
object library and animate them to enliven it. He can make
a boy jump, swim, run, smile and can also make a train run
on a track or make it whistle.

3. A programming environment

Now if the child wants his objects to be instructed like
‘what to do when and how’, ‘instruct’ helps him in doing
the same. He can instruct the boy when to smile or can
control the jumping boy with his joystick or keyboard. He
can instruct the train when to stop and whistle. By ‘instruct’
a child can instruct, relate or direct the objects of his world
he has created with create and animate.

Thus, invent provides a level of fullness as a tool at all
three stages. This helps a child even when he is learning or
becoming familiar to ‘invent’ as a medium.

‘invent’

c. Three steps ‘to invent’

Create, animate and instruct. Invent provides three major
operations.

In simple words,

Create:
Create objects. Create world.
Animate:
Give life to the objects and thus enliven the world.
Instruct:
Instruct/program objects what to do. (when, where,
how, ….)

The interesting feature of ‘invent’ having these three(create,
animate, instruct) is that they stand in themselves as a
separate tool, too.

invent - imagine...explore...&...learn 61

e. ‘Do it’

A one more wonderful feature of ‘invent’ is its ‘Do it’
concept. From animating an object to instructing it invent
helps a child to do things very intuitively. Interactions in
‘invent’ are of ‘do it’ nature. For example if a child wants a
ball to jump he can show the ball how to jump by making
it jump the way he likes and can thus teach a ball ‘how to
jump’. Later he can ask the ball to jump as same as he has
shown him. Not only this, using the create, animate and
instruct and their features in ‘invent’ is also very intuitive
at all level from putting an object to trash bin to swap the
control of a car from keyboard to joystick in visual syntax at
‘instruct’.

Other than these ‘invent’ provides an on place manipulation
handlers for objects of the world. A child can rotate, scale,
copy or put the object back to the object bar with this on-
place menu, which appears surrounding the object when
double-clicked. Other than these handlers the menu also
lets the child ‘create’, ‘animate’ or ‘instruct’ the object by
selecting the related operation, on place itself.

‘invent’

d. Object library

Created objects along with their states can be saved for
the future use. A child can reuse these saved objects in
any new world he creates. A child can use the tree, he has
made in some other world created with invent some days
back and saved in object library, in the new world he is
creating.

invent - imagine...explore...&...learn 62

‘invent’

‘invent’ and the water carrying train of
Malgudi

Here I would love to refer back to the story ‘The school
train’ to explain how ‘invent’ can help children to explore
their ideas and imaginations. Swami, Rajam and friends
have a thought of having a train to water those trees at
the back of Albert Mission School of Malgudi. Yes, a train
which will carry water from the tap near the railway station
to the school. ‘invent’ is there with them to help explore
their this thought.

Rajam has a vague thought to have a train like system to
help solve the water problem. He observed the lying down
old train track pieces here around. At the backyard of his
home he has two lorrys to carry something. He has an
idea but not so clear. Swami and other friends don’t have
a single clue. At Rajam’s home at that evening they could
do it all with invent. They could come up with the plan for
the wonderful, ‘the school train of Malgudi’. Not only could
they explore their ideas they could understand and tackle
with the problems to do the same. At last they made a
game also to water the school trees with their school train.

invent - imagine...explore...&...learn 63

‘invent’

To help understand better what is ‘invent’ and how a child
can use it, here are some examples explaining some basic
interactions.

I think we can’t imagine that ‘what a child can imagine’.
But, to understand ‘invent’ lets assume that a child
imagines having a running train and …

A running train

A child wants to have a train. He draws it with pencil and
colors and other tools in ‘create’. He also wants to have
that train running. By pressing record in ‘animate’ and
dragging the train from one place to the other he makes his
train running.

invent - imagine...explore...&...learn 64

‘invent’

Train is on the track

Now he wants his train on track. What he does he draws
track and puts the train on the track. Simple. No, but he
doesn’t want his train to go out of that track. He selects the
train and with ‘select object as a path’ tool of ‘animate’, he
very easily does the same.

invent - imagine...explore...&...learn 65

‘invent’

There are
trees, birds, mountain, houses and me

Wow, the train is running on the track, but it is looking all
empty. He creates mountains, sun, trees, school, railway
station, play ground and finally himself. He copies trees to
have so many of them.

invent - imagine...explore...&...learn 66

‘invent’

I am jumping

Now he wants to jump, too. With the ‘animate’ framing
method he makes 2 new frames and in the second frame
he makes himself somewhat up. He plays that state of
jump. Hey, he is jumping too now. He also makes the sun
shine, river flow and the engine of the train smoking.

invent - imagine...explore...&...learn 67

‘invent’

I jump when I want

No, I don’t want to jump forever. I want to jump when I
want. Ok, he opens ‘instruct’ and with ‘CONTROL’ he
selects to control jumping by mouse click. Yes, now he
jumps whenever he clicks mouse. Ha, ha.

invent - imagine...explore...&...learn 68

‘invent’

Train stops when I say to ‘stop’

Same way he also want the train to stop whenever he
say ‘stop’. By methods in ‘instruct’ he does that also very
easily. When he presses ‘S’ on the keyboard the train
stops. ‘G’ says the train to GO.

invent - imagine...explore...&...learn 69

‘invent’

I run on the ground

I also want to run on the playground. He does that also and
selects the arrow keys on keyboard to move around on the
play ground. He restricts himself to the ground, too.

invent - imagine...explore...&...learn 70

‘invent’

This is the ‘water carrying train of Malgudi’

Hey no, this is the water carrying train of Malgudi. The train
brings water from hand-pump near the railway station to
Albert Mission School of Malgudi and provides water to the
trees at the back of the school.

Hurrah. Let me whistle the train, too.

invent - imagine...explore...&...learn 71

Thiis is what my work and ‘invent’ is all about. There are
lot more efforts in terms of understanding the behavior of
a child and to understand how they think and learn. A lot
more explorations have been done to come up with ‘what
they want’ and once decided that, to solve ‘how to do
it?’ I am interested in helping children learn to think better
and deeper. I made the medium to serve as a new kind
of electronic paper that can hold new ways to represent
powerful ideas. In Alan Kay’s words ‘Readers can also
become writers’.

Let’s ‘imagine…explore…&…learn’.
Let’s invent.

‘Design is not just what it looks like and feels
like. Design is how it works.’

- Steve Jobs

‘invent’

invent - imagine...explore...&...learn 72

References

Ackerman, Edith. Piaget´s Constructivism, Papert’s Constructionism, What’s the Difference? [online]. Available from: http://
learnng.media.mit.edu/publications.html [Accessed 26th February 2005]

Bergin, Thomas J. and Richard G. Gibson, eds. History of Programming Languages-II. New York: ACM Press, 1996

Brooks, Jacqueline G. and Brooks, Martin G. In Search of Understanding: The Case for Constructivist Classrooms.
Alexandria, VA: Association for Supervision and Curriculum Development, 1993

Bruner, J. Acts of Meaning. Cambridge, MA: Harvard UniversityPress. 1990

Clement, D. and Gullo, D. Effects of Computer Programming on Young Children’s Cognition, Journal of Educational
Psychology (vol. 76, no. 6). 1984

Cypher, Allen. Watch What I Do: Programming by Demonstration. The MIT Press. 1993

Cypher, A. and Smith, D. KidSim: End user programming of simulations. In Proceedings of CHI’95 (Denver, Colo., May 7–11).
ACM Press, New York, 1995, pp. 27–34.

David Canfield Smith , Allen Cypher , Larry Tesler, Programming by example: novice programming comes of age,
Communications of the ACM, v.43 n.3, p.75-81, March 2000

Ferguson, Andrew. The History of Computer Programming Languages [online]. Available from: http://www.princeton.
edu/~ferguson/adw/programming_languages.shtml. [accessed on 21st February, 2005]

J.F. Pane, “A Programming System for Children that is Designed for Usability,” Ph.D. Thesis, Carnegie Mellon University,
Computer Science Department, CMU-CS-02-127, Pittsburgh, PA, May 3, 2002.

Kay, Alan. Computers, Networks and Education [online]. Scientific American Magazine. September 1991. Available from:
http://minnow.cc.gatech.edu/learn/9 [Accessed 4th January 2005]

Kay, Alan. The Power of the context. Remarks upon being awarded - with Bob Taylor, Butler Lampson and Chuck Thacker
- the Charles Stark Draper Prize of the National Academy of Engineering, 2004

Kay, Alan. Background on how children learn [online]. Scientific American Magazine. Available from: http://www.squeakland.
org/school/HTML/essays/how_child_learn.html [Accessed 20th January 2005]

Lammers, Susan. Programmers at work: Interviews with 19 programmers who shaped the computer industry. Tempus
Books. 1989

invent - imagine...explore...&...learn 73

References

LEGO serious play [online]
Available from: http://www.seriousplay.com [accessed February 01, 2005]

McNeil Jr., Donald G. The Last Time You Used Algebra Was …
New York Times, Late Edition - Final , Section 4 , Page 3 , Column 1. December 12, 2004. Available from: http://www.unm.
edu/~pre/law/articles_advise/algebra.htm [Accessed 21st March 2005]

Mistry, Pranav and Agrawal, Gajendra. Functinal metaphoric approach to be in the FLOW with software interfaces. In:
IHCI2004, The First All Indian Conference on Human-Computer Interaction, Bangalore. December 2004

Noble, J., Taivalsaari, A. and Moore, I. Prototype-Based Programming: Concepts, Languages and Applications. Springer-
Verlag Berlin and Heidelberg GmbH & Co. K. 1999

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books. New York. 1980

Papert, Seymour. Child Power: Keys to the New Learning of the Digital Century [Lecture] The eleventh Colin Cherry Memorial
Lecture on Communication, at the Imperial College in London. June 2, 1998

Papert, Seymour, Papert on Piaget [online].
Available from: http://www.papert.org/articles/Papertonpiaget.html [accessed February 07, 2005]

Papert, Seymour. Ghost in the Machine: Seymour Papert on How Computers Fundamentally Change the Way Kids Learn.
Interview by Dan Schwartz. http://www.papert.org/articles/GhostInTheMachine.html [Accessed February 01, 2005].

Piaget, J. & Inhelder, B. The Psychology of the Child. NY: Basic Books. 1969

Piaget, J. To Understand Is To Invent. New York: The Viking Press, Inc. 1972

Rader, C., Brand, C., and Lewis, C. Degrees of comprehension: Children’s mental models of a visual programming
environment. In Proceedings of CHI’97 (Atlanta, Ga.). ACM Press, 1997, pp. 351–358.

Read, Jeff. SQUEAK if You Love GUI [online]. World Tech Tribune. Available from: http://www.squeakland.org/school/HTML/
essays/love_gui.html. 2002. [Accessed 23rd March 2005]

Rogers, C.R. & Freiberg, H.J. Freedom to Learn (3rd Ed). Columbus, OH: Merrill/Macmillan. 1994

Sen, Ajanta and Poovaiah, Ravi. Into the world of the “really not real”. Leveraging a child’s make-belief abilities for design
clues to build a cross-cultural collaborative environment on the Internet.

invent - imagine...explore...&...learn 74

Smith, Randall B. and Ungar, D. Programming as an Experience: The Inspiration for Self. ECOOP ‘95 Conference
Proceedings, Aarhus, Denmark, August, 1995

Squeakland [online]
Available from: http://www.squeakland.org [accessed February 12, 2005]

Thanasoulas, Dimitrios. Constructivist Learning [online]. Karen’s Linguistics Issues, November 2002. Available from: http://
www3.telus.net/linguisticsissues/constructivist.html. [Accessed on 30th February, 2005]

Vygotsky, L.S. Thought and Language. Cambridge, MA: MIT Press. 1962

Weir, Sylvia. Cultivating Minds: A Logo Casebook. New York: Harper & Row, 1987

Wood, D. How children think and learn: Understanding children’s worlds. Cambridge, MA: Basil Blackwell. 1988

References

invent - imagine...explore...&...learn 75

 ‘The best way to predict the future is to invent it.’
- Alan C. Kay

By
Pranav Mistry

Guide
Prof. Ravi Poovaiah

invent
Imagine...Explore...&...Learn

